Frise Chronologique

l’échelle microscopique des atomes et des particules. C’est la physique appliquée à petite échelle, celle de l’atome : 1 milliardième de mètre. Ce sont les lois permettant de comprendre comment fonctionne un électron, un grain de lumière, une molécule... Elles ont été découvertes par Paul Dirac et Erwin Schrödinger prix Nobel de physique en 1933 , à la fois par des théories et des expériences, et n’ont jamais été mises en défaut. Mieux. Ce sont les lois les plus précises jamais inventées en science, permettant de prévoir des phénomènes 10 chiffres après la virgule. Le problème : ces lois échappent à nos intuitions habituelles. Nous vivons dans un monde « classique » : les objets tombent avec de la gravité, ils sont solides, ils sont là ou absents. A l’échelle de l’atome, les comportements sont différents. Il faut donc développer une nouvelle intuition, être très ouvert car on ne « voit » pas avec nos yeux les comportements qui se jouent à l’échelle de l’atome. On n’en a connaissance qu’avec des déductions, des raisonnements et des mesures. En effet, les atomes et les particules élémentaires de la matière, n’évoluent pas comme un système classique, où les quantités d’énergie échangées peuvent prendre n'importe quelle valeur. Pour un système quantique, l’énergie s’échange par valeurs discrètes ou « quanta ». Par ailleurs, la physique classique décrit différemment un corpuscule (atome, particule) et une onde (lumière, électricité) tandis que la mécanique quantique confond les deux descriptions : un photon, un électron, un atome ou même une molécule sont à la fois onde et corpuscule. Si, en physique classique, l’état d’un système est p arfaitement défini par la position et la vitesse de l'ensemble de ses composants – il ne peut être alors que dans un seul état à un moment et à un endroit donné, il n’en va pas de même en physique quantique. Un système quantique, tel qu'une simple onde-corpuscule, peut se trouver dans une superposition cohérente d'états, qui traduit la potentialité de tous ses états possibles. Sa présence à un endroit donné, son énergie deviennent alors probabilistes : ainsi, un atome peut être à la fois dans son état fondamental stable et dans un état excité (c’est -à-dire possédant une énergie supérieure, acquise par exemple par l'absorption d'un photon). Un photon peut être à un endroit et à un autre en même temps. On ne peut être certain qu'il est en un seul lieu que si l'on effectue une mesure. Le processus de mesure impose alors à l’onde -corpuscule un état défini. De ces découvertes, qui forment la première révolution quantique, découlent un certain nombre d’applications encore utilisées aujourd’hui : les lasers, les circuits intégrés ou encore les transistors, à la base du fonctionnement des appareils électroniques notamment. Pour les physiciens, c’est la découverte la plus importante du XXe siècle.

-Sommaire

109

Made with FlippingBook - professional solution for displaying marketing and sales documents online